Shane Tang

Math 1020 Project

1- Interpret the percent strength 25.6%. Answer $25.6 \%=\frac{25.6 \mathrm{~g} \text { of pure drug }}{100 \mathrm{~mL} \text { of solution }}$
2- Interpret the percent strength 5.7%. Answer $5.7 \%=\frac{5.7 \mathrm{~g} \text { of pure } \mathrm{drug}}{100 \mathrm{~mL} \text { of solution }}$
3- Interpret the percent strength 8.3%. Answer $8.3 \%=\frac{8.3 \mathrm{~g} \text { of pure } \mathrm{drug}}{100 \mathrm{~mL} \text { of solution }}$
4- Describe how you mix the 25.6% and 5.7% solutions to get 1 L of an 8.3% solution. Round to the nearest natural number in mL .
Answer: Step one. Convert 1 L to $1,000 \mathrm{~mL} 1 L \times \frac{1000 \mathrm{~mL}}{1 L}=1000 \mathrm{~mL}$
Step two: $1000 \mathrm{~mL} \times \frac{8.3-5.7}{25.6-5.7}=130.65=131 \mathrm{~mL}$
Step three: Start with 131 mL of the 25.6% solution and add the 5.7% solution until the total volume is 1000 mL of the 8.3% solution.
5- How many mL of the 25.6% solution do you use? Answer: 131 mL
6- How many grams of pure drug are there in the above volume? Round to the nearest tenth.
Answer: $\frac{25.6 \mathrm{~g}}{100 \mathrm{~mL}} \times \frac{131 \mathrm{~mL}}{1}=33.5 \mathrm{~g}$.
7- How many mL of the 5.7% solution do you use? Answer: $1000 \mathrm{~mL}-131 \mathrm{~mL}=869 \mathrm{~mL}$
8- How many grams of pure drug are there in the above volume? Round to the nearest tenth.
Answer: $869 \mathrm{~mL} \times \frac{5.7 \mathrm{~g}}{100 \mathrm{~mL}}=49.5 \mathrm{~g}$
9- Find the sum of the number of grams of pure drug from the 25.6% and 5.7% solutions. Answer: $33.5 \mathrm{~g}+49.5 \mathrm{~g}=83 \mathrm{~g}$
10- How many grams of pure drug are there in 1 L of the 8.3% solution?
Answer: $1 L \times \frac{1000 \mathrm{~mL}}{1 L} \times \frac{8.3 \mathrm{~g}}{100 \mathrm{~mL}}=83 \mathrm{~g}$

